A Probabilistic Framework for Semi-autonomous Robots Based on Interaction Primitives with Phase Estimation

نویسندگان

  • Guilherme Maeda
  • Gerhard Neumann
  • Marco Ewerton
  • Rudolf Lioutikov
  • Jan Peters
چکیده

This paper proposes an interaction learning method suited for semi-autonomous robots that work with or assist a human partner. The method aims at generating a collaborative trajectory of the robot as a function of the current action of the human. The trajectory generation is based on action recognition and prediction of the human movement given intermittent observations of his/her positions under unknown speeds of execution; a problem typically found when using motion capture systems in scenarios that lead to occlusion. Of particular interest, the ability to predict the human movement while observing the initial part of his/her trajectory allows for faster robot reactions, and as it will be shown, also eliminates the need of time-alignment of the training data. The method models the coupling between human-robot movement primitives and is scalable in relation to the number of tasks. We evaluated the method using a 7-DoF lightweight robot arm equipped with a 5-finger hand in a multi-task collaborative assembly experiment, also comparing results with our previous method based on timealigned trajectories.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase estimation for fast action recognition and trajectory generation in human-robot collaboration

This paper proposes a method to achieve fast and fluid human-robot interaction by estimating the progress of the movement of the human. The method allows the progress, also referred to as the phase of the movement, to be estimated even when observations of the human are partial and occluded; a problem typically found when using motion capture systems in cluttered environments. By leveraging on ...

متن کامل

Effective Mechatronic Models and Methods for Implementation an Autonomous Soccer Robot

  Omni directional mobile robots have been popularly employed in several applications especially in soccer player robots considered in Robocup competitions. However, Omni directional navigation system, Omni-vision system and solenoid kicking mechanism in such mobile robots have not ever been combined. This situation brings the idea of a robot with no head direction into existence, a comprehensi...

متن کامل

Cooperative probabilistic state estimation for vision-based autonomous mobile robots

With the services that autonomous robots are to provide becoming more demanding, the states that the robots have to estimate become more complex. In this article, we develop and analyze a probabilistic, vision-based state estimation method for individual, autonomous robots. This method enables a team of mobile robots to estimate their joint positions in a known environment and track the positio...

متن کامل

Autonomous human-robot proxemics: socially aware navigation based on interaction potential

To enable situated human–robot interaction (HRI), an autonomous robot must both understand and control proxemics—the social use of space—to employ natural communication mechanisms analogous to those used by humans. This work presents a computational framework of proxemics based on data-driven probabilistic models of how social signals (speech and gesture) are produced (by a human) and perceived...

متن کامل

Design and Experimental Evaluation of integrated orientation estimation algorithm Autonomous Underwater Vehicle Based on Indirect Complementary Filter

This paper aims is to design an integrated navigation system constituted by low-cost inertial sensors to estimate the orientation of an Autonomous Underwater Vehicle (AUV) during all phases of under water and surface missions. The proposed approach relied on global positioning system, inertial measurement unit (accelerometer & rate gyro), magnetometer and complementary filter technique. Complem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015